Trauma pediátrico, ¿hay diferencias?

Iván Alcoholado B.

Las diferencias anatómicas, fisiológicas y psicológicas de los niños con los adultos repercuten en la evaluación y manejo del trauma pediátrico. Analizaremos primero la evaluación inicial donde tenemos una serie de factores que son diferentes.

En la inmovilización de la columna cervical podemos apreciar que por la desproporción entre la cabeza del niño menor y su cara, la posición neutra del adulto deja la columna cervical del pequeño en posición de semiflexión, lo que se mejora con tablas espinales que desde los hombros a cuello tengan una mayor altura de aproximadamente 2 cm, o en su defecto con tabla que a nivel del occipucio tenga un orificio circular u ovoideo que permita que se alinee la columna en posición neutra con la precaución de evitar que dichos bordes provoquen isquemia con el riesgo consiguiente de presentar escaras. De no tener estas tablas pediátricas es conveniente colocar la cabeza en ligera posición de olfateo, lo que además permeabiliza mejor la vía aérea.

La cavidad bucal del niño tiene un tamaño relativamente más pequeño que en adultos con una lengua proporcionalmente más grande, lo que obliga a ser más cuidadoso en la colocación de la cánula de Mayo, ayudados con un bajalenguas para no dañar estructuras como los dientes o partes blandas de la cavidad bucal. La aspiración de las secreciones de la vía aérea es fundamental ya que los lúmenes pequeños se obstruyen fácilmente, y si recordamos que el diámetro es directamente proporcional a la cuarta potencia del radio, cualquier secreción disminuye el lumen de la vía aérea con la consiguiente disminución del flujo de oxígeno. Se debe recordar que el ángulo nasofaringeo es muy agudo, el retrofarinx contiene mucho tejido adenoide especialmente en preescolares, y la laringe más pequeña y blanda se encuentra más a cefálico (C3) y ventral, todo lo cual determina un trayecto difícil de recorrer con un tubo nasotraqueal sin que movilicemos la columna cervical y hace que en la urgencia, la vía indicada para la intubación sea la vía orotraqueal. Para ello debemos usar un laringoscopio de mango recto, pasar las cuerdas vocales, y como el anillo cricotiroideo queda en estrecha relación con el tubo, no es conveniente usar manguito ya que solo dañará los cílios y epitelio traqueal. Los tubos de fábrica tienen un largo mayor al necesario aumentando el espacio muerto y dificultando la ventilación por lo que es mejor –una vez colocado el tubo en posición correcta– cortarlo en el extremo externo y relocalizar la conexión. Por otra parte, debemos considerar que la tráquea del lactante es pequeña y corta, de modo que debemos tener la precaución de evitar las intubaciones monobronquiales derechas. Es característico de la tráquea y bronquios en edad pediátrica el tener cartiláigos más blandos y compresibles, haciendo que la intubación proporcionalmente sea más necesaria. La confirmación de la correcta intubación se debe hacer auscultando a nivel de las axilas (lejos de los bronquios por transmisión del sonido de un hemitórax a otro si auscultamos en la cara anterior bajo las clavículas), y epigastrio para pesquisar una intubación faringoesofágica, palpación de la tráquea, y luego con una radiografía de tórax.

En los excepcionales casos en que se debe efectuar una cricotiroidotomía con sistema jet de oxígeno debemos recordar que el menor tamaño del tórax pediátrico da menos tiempo ~10 a 20 minuto para lactantes y preescolares– que en el adulto para que se produzca la hipercapnia.

1. Hospital Roberto del Río y Clínica Alemana, Unidad de Cirugía Infantil.
Desde el punto de vista de la ventilación es conveniente recordar que el parénquima pulmonar del niño menor, aún en pleno proceso de multiplicación de unidades alveolo capilares hasta los seis años, no resiste presiones muy altas de modo que debemos evitar los barotraumas iatrogénicos, y por otra parte, la delgada pared torácica del niño hace que la inspección facilite la observación de la motilidad torácica e indirectamente la ventilación. No obstante debemos introducir rápidamente el monitoreo con oxímetro de pulso y capnógrafo si lo tenemos intubado.

Los niños por tener estructuras mediastínicas muy móviles toleran mal el neumotórax hipertensivo que impide el retorno venoso a la bomba provocando por la ley de Starling una disminución del volumen expulsivo con la consiguiente hipoperfusión tisular. La colocación de cualquier tubo pleural debe efectuarse regladamente siguiendo los principios de la técnica abierta, ya que la pared torácica delgada hace más fácil que se produzca una iatrogenia. Por el escaso celular subcutáneo y la menor masa muscular debemos, para evitar la entrada de aire al retirar el tubo, colocar el tubo con un trayecto subcutáneo a lo menos de uno o dos traveses de dedo a caudal, que permitan comprimir dicho trayecto al momento de retirarlos.

La gran reserva cardiovascular del niño, la mayoría de las veces indemne por no tener patología de base, hace que compense mejor inicialmente las pérdidas sanguíneas, ya que la capacidad de respuesta de los vasos arteriales y venosos es mejor en pediatría y no por ser distintos los mecanismos de respuesta humoral neuroendocrina. Es así como con sangramiento entre 15 y 25% de la volemia recién manifiestan características de shock como taquicardia y palidez, y ya con pérdidas de 40% o más se presenta hipotensión sistólica. Esta respuesta fisiológica no nos debe engañar y debemos ser agresivos en la terapia de restitución de volumen de 20 ml/kg (25% de pérdida de la volemia que normalmente es de 80 ml/kg) al existir signos iniciales de shock, el cual debemos usarlo a 39º para evitar hipotermia si la infusión es masiva. Dado que a veces es difícil obtener el peso del paciente, y que no siempre se obtiene el dato anamnésico, podemos recurrir a la cinta de Braselow que mide desde la cabeza a los pies y nos da una estimación del peso y a su vez nos indica el tamaño de las bránuas, tubos y dosis de medicamentos estimados.

Las vías de acceso son difíciles de obtener por su tamaño pequeño, tejiendo adipo o veces aumentado a nivel del antebrazo especialmente en los lactantes y preescolares, más la vasoconstricción propia de la respuesta al shock que se agrava si hay hipotermia. Si la obtención de las vías no es lograda con dos o tres intentos debemos rápidamente actuar con denudación venosa en la safena maleolar a nivel del tobillo, mediana cefálica a nivel del codo, cefálica principal a nivel del brazo, yugular externa en el cuello, y si tenemos destreza en el método, una vía subclavia para los niños de 7 años de edad o mayores. La punción androceo para los pacientes menores de seis años a nivel de la cara anteromedial de la tuba, dos cm bajo la tuberosidad anterior nos permite infundir volúmenes adecuadamente, llegando en 20 segundos desde la tuba al corazón si no existe fractura en dicho hueso. No debemos infundir bretillum y el bicarbonato debemos infundirlo con precaución ya que en altas dosis puede provocar daño a nivel medular. Podemos transfundir elementos sanguíneos por esta vía y es muy importante que en el momento en que hemos logrado volemia adecuada con la infusión androceo se mencionen una o dos vías venosas periféricas, retirando las vías óseas para evitar posibles infecciones locales u óseas que desprestigiaron esta vía en décadas pasadas.

Es prioridad uno tratar el shock adecuadamente; la prioridad dos es determinar la causa, y la tercera es tratarla.

La colocación de sonda nasogástrica es fundamental ya que permite vaciar el estómago de su contenido y del aire tragado por el niño que ha llorado por el trauma, lo que le provoca distensión gástrica con el riesgo de vómitos con aspiración a la vía aérea y dificultad respiratoria por ascenso diafragmático. En lactantes que normalmente tienen una respiración nasal, la sonda en la práctica oscila una de las fosas nasales puede provocar problemas de saturación de oxígeno de modo que es preferible usar la vía orogástrica y si esto no es posible debemos retirar la sonda nasogástrica cuando ya no sea imprescindible su uso, vaciarla completamente el contenido gástrico con una adecuada aspiración.
En la evaluación neurológica debemos
examinar igualmente las pupilas y efectuar
un Glasgow para evaluar si está alerta, res-
ponde a la voz, al estímulo doloroso o no res-
ponde.

Cuando efectuamos la exposición corpo-
ral debemos hacerlo en forma breve dado
que los niños por su gran superficie corporal
en relación a su masa corporal pierden calor
con facilidad, además tienen escasa reserva
energética y su panículo adiposo es insufi-
ciente como mecanismo de termorregulación.
Los coberteros térmicos con sistema eléctri-
co pueden provocar quemaduras en la super-
ficie expuesta por fallas en los mecanismos
de control, y las frotadas térmicas en las
zonas de apoyo. La mejor manera de evitar
la hipotermia es tener salas de reanimación
con temperatura ambiental con sistemas de
control que permitan evitar la hipotermia, y
con soluciones a temperaturas de 37 a
39°C. Si hay hipotermia conviene usar fraza-
das térmicas con circulación de agua o aire
calentar por su mayor seguridad y obtención
de un calor más homogéneo.

Desde un punto de vista del trauma, el
score más aplicable a los niños es el trauma
score pediátrico efectuado por Tepas, quien
considera seis factores: peso, vía aérea,
presión arterial sistólica, estado de concien-
cia, presencia de fracturas y/o de heridas,
que da un puntaje de más dos para lesiones
menores o sin lesión, más uno para lesiones
mayores y menos uno para lesiones crónicas
o potencialmente letales lo que da un rango
de puntajes desde menos seis a más doce.
Tiene un alto valor pronóstico ya que todos
los puntajes negativos tienen un alto índice
de mortalidad y los niños con puntajes ma-
yores de nueve tienen siempre sobrevida.
Los niños con puntaje igual o menor a ocho
deben llevarse a servicios pediátricos espe-
cializados para aumentar sus expectativas
de vida.

Desde el punto de vista psicológico los
niños no están capacitados para enfrentar
una situación de trauma de modo que es
necesario ganarse su confianza, si es posi-
ble, lo que facilita el examen. Por otra parte,
deben ser hospitalizados especialmente en
unidades de tratamiento intensivo y sufren,
al volver a sus hogares, cambios de conduc-
ta, baja en su rendimiento escolar y pueden
tener trastorno del sueño, lo que debe po-
nerse en conocimiento de sus padres para
que comprendan esta situación, lo apoyen,
lo hagan presente a sus profesores en el co-
legio y eventualmente lo asistan con psicólo-
go, psicopedagogo o psiquiatra si la situa-
ción es más grave. En el manejo de estos
niños el médico debe ser muy cuidadoso al
entrevistarse con los padres ya que una pa-
labra mal dicha puede ser interpretada como
culpabilidad por parte de uno de los padres y
crear conflictos serios entre ellos. Pero por
otra parte, debemos estar atentos a la posi-
bilidad de que se trate de un niño maltra-
tado lo que nos obliga a ser minuciosos en
la anamnesis y examen físico para pesqui-
sar dichas situaciones.

Analizaremos las diferencias en los dife-
rentes traumas por sistemas:

A nivel del trauma craneoencefálico en
la edad pediátrica es más frecuente la ap-
nea, el vómito y la inconsciencia inicial, aun
ante traumas menores. Debemos recordar
que presenta más frecuentemente concu-
sión cerebral y síndrome de hipertensión en-
docraneana que efectos de masa por hemo-
ragia, por lo que se deben tener los equipos
adecuados para la medición de la presión in-
tracraneana. Solo 8% de los niños que se
hospitalizan por trauma craneoencefálico re-
quiere de cirugía. Proporcionalmente pre-
sentan más hemorragias subaracnoídeas que
se manifiestan porcefalea, leve alza
témica y rigidez de nuca. Es muy importan-
te recordar que el mejor tratamiento inicial
del TEC es el oportuno y adecuado manejo
del ABC que evita el daño cerebral secundar-
ya por hipoxia e hipoperfusión. En niños,
la causa de muerte más frecuente es el trauma
cranioencefálico, y el daño cerebral secun-
dario contribuye en 50%.

A nivel de columnas cervicales hay un
trauma por cada 20 del adulto, pero si debe-
mos estar atentos a la presencia de lesiones
de médula espinal sin lesión ósea radioló-
rica (SCIWORA = spinal cord injurie without
radiological abnormalty, en la literatura in-
glesa) que se producen por la gran elastici-
dad de los tejidos y pobre desarrollo de las
estructuras óseas de los niños. Se requiere
un muy buen examen físico y complementar
con tomografía axial computadorizada (TAC)
or resonancia magnética (RM) si es necesae-
rio. La obtención de una radiografía convenc-
cional de columna cervical normal en que
por el mecanismo lesional tenemos sospe-
cha de trauma medular y en que el examen
físico es compatible o dudos, nos obliga a
mantener nuestras medidas de inmovilización hasta asegurarnos con exámenes complementarios si hay o no lesión de médula y se trate adecuadamente.

La gran deformidad plástica que toleran las costillas hace que a nivel torácico predominen los neumotórax y las contusiones pulmonares, que en muchas oportunidades no tienen fracturas debido a la gran elasticidad de las costillas por osificación incompleta en la edad pediátrica. Debemos sí estar muy atentos a la presencia de fracturas ya que eso significa una lesión de alta energía con la consiguiente transferencia de esta a estructuras subyacentes, provocando contusiones pulmonares que inicialmente no se manifiestan en su real magnitud.

A nivel abdominal por lo delgada de la pared abdominal es frecuente que las heridas penetrantes provoquen daño de órganos internos, de tal modo que debemos ser agresivos en la conducta, quirúrgicos de estas, y en los traumas cerrados recordar que se afectan más órganos simultáneamente por la proximidad de ellos. La frecuente asociación de trauma cráneoencefálico con trauma abdominal nos obliga a estudiar con imágenes la cavidad abdominal en todo paciente pediátrico inconsciente.

El tratamiento conservador de las lesiones de órganos sólidos como hígado o bazo tiene éxito en 85 a 90%, por lo que debemos intentarlo si la lesión en de tipo I, II y III de la clasificación del American College of Surgeons. Para tomar esta decisión es muy importante atenerse al algoritmo de fluidos de colocar uno o dos bolos de 20 ml/kg cada uno de Ringer-lactato o solución salina al 0,9% si no disponemos de Ringer para lograr la estabilidad hemodinámica, y al no obtenerlo debemos usar un tercer bolo, seguido de transfusión de 10 ml/kg de glóbulos rojos (por la relación de cristaloides: coloides 3:1), o 20 ml/kg de sangre si no disponemos de glóbulos para lograr la estabilización. Esta es una decisión del cirujano quien en el caso del trauma esplénico, por ejemplo, debe considerar dentro de los beneficios: evitar la laparotomía y no tener infección postesplenectomía, y dentro de los riesgos aquellos inherentes a las transfusiones como hepatitis y SIDA si no se logra estabilizar y sigue sangrando. En la decisión de tratar no quirúrgicamente un órgano sólido trau-